[suPAR]

Monograph
<table>
<thead>
<tr>
<th>Content:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>suPAR – Background</td>
<td>3</td>
</tr>
<tr>
<td>suPAR in:</td>
<td></td>
</tr>
<tr>
<td>The general population</td>
<td>6</td>
</tr>
<tr>
<td>The emergency department</td>
<td>9</td>
</tr>
<tr>
<td>Infectious diseases</td>
<td>13</td>
</tr>
<tr>
<td>Cancer</td>
<td>17</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>20</td>
</tr>
<tr>
<td>Neurology</td>
<td>22</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>24</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>29</td>
</tr>
<tr>
<td>Gastroenterology</td>
<td>32</td>
</tr>
<tr>
<td>Nephrology</td>
<td>35</td>
</tr>
<tr>
<td>Intensive care</td>
<td>37</td>
</tr>
<tr>
<td>Surgery</td>
<td>39</td>
</tr>
<tr>
<td>Appendices</td>
<td>43</td>
</tr>
</tbody>
</table>
suPAR – Background

The biomarker suPAR (soluble urokinase plasminogen activator receptor) is the soluble form of the cell membrane-bound protein uPAR, which is expressed mainly on immune cells, endothelial cells, and smooth muscle cells. uPAR is released during inflammation or immune activation, and therefore the suPAR level reflects the extent of immune activation in the individual\(^1\). All human beings have a baseline level of suPAR that is individually determined and increases with age.

Studies have shown that the suPAR level is associated with morbidity and mortality in a number of acute and chronic diseases and in the general population\(^2\)-\(^{15}\). The suPAR level is elevated across diseases, and not solely associated with one specific disease. Therefore, suPAR is applicable as a prognostic marker and not as a diagnostic marker. This characteristic may be utilized for risk stratification in unselected patients.

Originally, uPAR (urokinase plasminogen activator receptor) was proven a receptor for urokinase (uPA) which splits plasminogen into active plasmin. Moreover, uPAR interacts with other proteins and plays a role in several important cell processes like migration, adhesion, angiogenesis, proliferation, and chemotaxis\(^1\).

The suPAR protein was discovered in 1991, when it was found to be a marker of cancer progression\(^1\). In recent years, several studies have shown that suPAR is associated with a number of chronic diseases\(^2\)-\(^{12}\) (including cardiovascular, hepatic, renal, and pulmonary diseases), and that the level is a predictor of a negative outcome of various infectious diseases\(^17\)-\(^{21}\) (tuberculosis, HIV, malaria, sepsis, meningitis, pneumonia) and in critically ill patients\(^15\).
Across diseases, the suPAR level discriminates non-survivors from survivors. suPAR reflects the level of chronic inflammation, and therefore it has been studied as a potential marker of development of diseases, and studies have shown that an elevated level predicts development of chronic diseases and cancer in the general population2,15.

The suPAR blood level is stable with no diurnal variation and no changes following fasting. suPAR can be measured in blood, plasma, urine, cerebrospinal fluid, ascites fluid and pleural fluid1. The level increases and decreases with progression and improvement of a disease, respectively, but more slowly compared to e.g. C-reactive protein (CRP).

The normal suPAR plasma level is 2-3 ng/mL in healthy individuals, about 3-4 ng/mL in unselected patients in emergency departments, and about 9-10 ng/mL in critically ill patients.

At Copenhagen University Hospital, Hvidovre in Denmark, suPAR measurement has been implemented as a clinical routine procedure.

\textbf{For further information, please see appendices and subsequent sections}

17. Sidenius N, Sier CF, Ullum H et al. Serum level of soluble urokinase-type plasminogen activator receptor is a strong and independent predictor of survival in human immunodeficiency virus infection. Blood 2000;96(13):4091-4095.
suPAR in the general population

The following factors are associated with an elevated suPAR level:

- Daily smoking
- Obesity
- Previous AMI
- Low HDL cholesterol/high LDL cholesterol
- Unhealthy diet
- Physical inactivity
- Age

Moreover, an elevated suPAR level is associated with future incidence of:

- Mortality
- Cardiovascular diseases
- Cancer
- Type 2 diabetes
- Renal failure

In the general population, the suPAR level is higher in females than in males; the suPAR levels in young healthy males and females are about 2.5 ng/mL and 3.0 ng/mL, respectively. The suPAR level increases slightly with age but, above all, it is affected by lifestyle and risk factors. Among lifestyle factors smoking is definitely the most important – daily smoking is associated with an increase in suPAR of 1-1.5 ng/mL compared to non-smokers.

Moreover, an unhealthy diet and, to a lesser extent, physical inactivity may also increase the suPAR level. However, the impact on suPAR is significantly smaller compared to the impact of smoking (about 0.2 ng/mL for an unhealthy diet). The association between alcohol consumption and suPAR is not clear, but alcoholic liver disease causes very high suPAR levels.
Cardiovascular risk factors affect the suPAR level, as there is a slightly positive association with LDL-cholesterol and a clearly negative association with HDL-cholesterol\(^1\)-\(^3\). Previous AMI causes an increase in suPAR level of about 0.4 ng/mL\(^3\),\(^7\). Two studies have demonstrated an association between elevated blood pressure and suPAR\(^1\),\(^2\), but in a third study this could not be confirmed\(^3\). A BMI of 20-35 kg/m\(^2\) has no notable effect on the suPAR level, but in obesity (BMI > 40) the suPAR level is about 0.5 ng/mL higher than in normal weight individuals\(^3\).

suPAR and future development of diseases

In the general population an elevated suPAR level is associated with future development of cancer, cardiovascular diseases, and type 2 diabetes and is a predictor of premature mortality and renal failure (Figure 1)\(^1\),\(^2\),\(^5\),\(^7\).

Unpublished data from the Danish Inter99 cohort (the cohort in Haupt et al.\(^3\)) show that the mortality risk is associated with the suPAR level itself, and not with the underlying risk factors which cause increased suPAR levels. For example, the mortality risk in non-smokers with a high suPAR level is increased compared to smokers with a low suPAR level. Thus, learning about the individual’s risk factors may indicate the reason for an elevated suPAR level, but it still seems that the individual’s risk is primarily correlated with the suPAR level.
Figure 1. The left graph displays cancer incidence during a 12.6-year follow-up of 2,602 individuals in the Danish MONICA cohort. The suPAR level is below 3.4 ng/mL in the 1st quartile and above 4.9 ng/mL in the 4th quartile. The right graph displays mortality in the 1,310 males in the same study. The suPAR level is below 3.1 ng/mL in the 1st quartile and above 4.7 ng/mL in the 4th quartile. Figure modified from Eugen-Olsen et al., JIM 2010.

The overall impact of lifestyle and risk factors on suPAR

Please note that although the single factors mentioned above in general have a very small impact on suPAR, the overall impact of a number of risk factors may be considerable. Adjusted analyses show that a 30-year-old non-smoking, and physically active male of normal weight on a healthy diet has a suPAR level of about 2.5 ng/mL, whereas a 30-year-old obese, heavily smoking, and inactive male on an unhealthy diet has a suPAR level of about 5.4 ng/mL. This exceeds the difference between the 1st and 4th suPAR quartile in Figure 1 and therefore indicates a considerable risk difference.

suPAR in the emergency department

In the emergency departments, shortened hospital stays and a reduced number of beds cause a large patient turnover. For optimal treatment and observation of patients admitted to the emergency departments, a proper risk assessment is needed to ensure that the most ill patients are prioritized and are quickly examined and put under a more careful observation. Moreover, unnecessary admissions and the complications from these (functional decline, delirium, and iatrogenic infections) are avoided by identifying those patients who can be discharged.

So far, systematized triage systems are used for this risk assessment and to prioritize the order of patients to be treated.

A major proportion of patients admitted to emergency departments are elderly medical patients, including many multimorbid, weak, and frail patients often presenting unspecific symptoms.

Studies from various emergency departments located in the Copenhagen region, Denmark, among others the emergency departments at Hvidovre Hospital, Hillerød Hospital, and Frederiksberg Hospital, have shown that suPAR is associated with:

- Age¹,²
- Severe and/or multiple comorbidities¹,²
- Length of hospital stay²
- Admission to an intensive care unit²,³
- Readmission within 30 and 90 days²
- 48-hour, 30-day and 90-day mortality²

This means that in acute medical patients, suPAR measured on admission is higher in elderly patients, patients who end up being admitted for a long period, patients ending up in the intensive
care unit, seriously or chronically ill patients, and multimorbid patients as well as patients who are readmitted or die within 30 as well as 90 days1–4.

Even taking into account other well-known prognostic factors, including sex, age, Charlson score, and CRP, suPAR still remains an independent predictor of readmission and mortality within 30 as well as 90 days2.

On the other hand, patients with a low suPAR level are at a lower risk of being readmitted or dying compared to others of the same age. Example:

- The background 30- and 90-day mortality in patients below the age of 70 is 1.5\% and 2.9\%, respectively.
- In a patient below the age of 70 with a suPAR level of 0-3 ng/mL, the risk of dying within 30 and 90 days is 0.3\% and 0.8\%, respectively.
- By comparison, in a patient below the age of 70 with a suPAR level above 9 ng/mL the risk of dying within 30 and 90 days is 19.7\% and 27.6\%, respectively2.

Diagnoses

The suPAR level is elevated in emergency medical patients with:

- cancer, diabetes, dementia, paralyses, cardiovascular diseases, chronic pulmonary diseases, peptic ulcer, hepatic diseases, rheumatic diseases, and renal/urinary tract diseases1,2,4.
Data from Hvidovre Hospital emergency department.

Age: Median (25-75%) suPAR level:
- 0-50 years: 2.3 ng/mL (1.8-3.0)
- 50-70 years: 3.0 ng/mL (2.3-4.2)
- >70 years: 4.4 ng/mL (3.2-6.1)

Length of hospital stay: Median suPAR level (25-75%):
- 0 days: 2.6 ng/mL (1.9-3.6)
- 2-4 days: 3.7 ng/mL (2.7-5.3)
- >10 days: 5.1 ng/mL (3.6-7.5)

Admission to intensive care unit:
Median suPAR level (25-75%):
- + intensive care unit: 3.2 ng/mL (2.2-4.6)
- + intensive care unit: 5.6 ng/mL (3.0-7.9)

Charlson score (number and severity of comorbidities):
Median suPAR level (25-75%):
- No comorbidities: 2.9 ng/mL (2.1-4.2)
- Charlson score = 1: 3.7 ng/mL (2.7-5.4)
- Charlson score ≥ 4: 7.2 ng/mL (4.8-10.9)

Readmission: Median suPAR level (25-75%):
- Neither readmission nor mortality within 30 days: 3.0 ng/mL (2.2-4.2)
- Readmission within 30 days: 3.9 ng/mL (2.7-5.6)

Mortality (see Appendix 1):
Median suPAR level (25-75%):
- Survived for 30 days: 3.1 ng/mL (2.2-4.5)
- Died within 30 days: 6.8 ng/mL (4.7-9.9)
- 30-day mortality AUC: 0.84 (95% CI: 0.81-0.86)
suPAR in infectious diseases

The suPAR level is elevated in patients with infectious diseases compared with healthy individuals, and an elevated level is associated with:

- Advanced disease
- Poor prognosis

This applies to various infectious diseases, among others:

- HIV\(^1-3\)
- Sepsis\(^5-11\)
- Hepatitis B\(^12\)
- Hepatitis C\(^13-14\)
- Tuberculosis\(^15-17\)
- Malaria\(^18-19\)
- Meningitis\(^21-22\)
- Pneumonia\(^24-25\)

In general, the suPAR level is slightly elevated in patients with infectious diseases, and in all infectious diseases studied, an elevated suPAR level is associated with a poorer prognosis. In infectious diseases, the diagnostic value of suPAR is weak, but instead it has a prognostic value.

In patients with HIV infection, it was demonstrated that the suPAR level is slightly elevated and increases with the disease stage (WHO criteria). The first study of suPAR in HIV showed that suPAR was at least as strong a prognostic marker of the natural progression of HIV as CD4 and viral load\(^1\). Antiretroviral therapy (ART) causes a decrease in suPAR of about 17\%\(^2\). However, after 5 years of treatment, the patients' suPAR level is still higher than in healthy controls\(^2\). Side effects of treatment are associated with higher suPAR
levels\(^3\). In addition to the correlation with virological and immunological effects of the infection, the suPAR level correlates with age, metabolic syndrome, smoking, and low muscle mass\(^4\).

In patients with sepsis\(^5-7\), it has been found that the suPAR level is of some diagnostic value, as it increases with seriousness of sepsis and is frequently above 10 ng/mL in patients with impaired organ function\(^8,9\). However, most studies show that CRP and procalcitonin (PCT) are better diagnostic markers of bacterial sepsis, whereas suPAR is the best prognostic marker\(^6,10\). In a later cohort it was shown and validated that suPAR in combination with the APACHE score can improve the risk stratification of patients with sepsis\(^11\).

The suPAR level is elevated in hepatitis B patients with hepatic fibrosis compared to patients with no or mild fibrosis. Thus, suPAR may be useful for identification of hepatitis B patients with significant fibrosis\(^12\).

In hepatitis C patients the suPAR level is elevated, and the level increases with the severity of fibrosis. Because hepatic disease and fibrosis affect the suPAR level, the prognostic value and the reflection of disease severity are probably a result of the liver condition rather than the hepatitis C infection\(^13\). This is supported by data demonstrating that suPAR is also associated with seriousness and prognosis in patients with non-alcoholic fatty liver disease\(^14\).

Active tuberculosis (TB) causes a substantial increase in suPAR level, typically to about 6-7 ng/mL – the higher, the worse\(^15,16\). A study from Guinea-Bissau has shown that the suPAR level measured upon initiation of treatment for TB is a prognostic marker of mortality during treatment. Measurement of suPAR following one month of treatment demonstrated that the change in suPAR level was also associated with mortality; patients experiencing no decrease – or even an increase – in suPAR level have a poorer
prognosis than patients experiencing a decrease following one month of treatment17.

In malaria, suPAR has been studied in children, adults, and pregnant women. In children, a doubling of the suPAR level is observed, which decreases back to a normal level following 14 days of effective treatment18. In adult patients with malaria and acute renal damage, suPAR was associated with severity of the renal damage and was higher in patients who subsequently needed dialysis19. In pregnant women infected with malaria, a high suPAR level is associated with low birth weight of the baby20.

An elevated suPAR level in the cerebrospinal fluid (CSF) in children and adults with meningitis is associated with increased mortality21,22.

In children with pneumonia, suPAR is associated with the severity of the infection and length of hospital stay23. In adults with sepsis and ventilator-associated pneumonia, the suPAR level is strongly and independently associated with a negative prognosis24.

suPAR in cancer

The suPAR level is elevated in cancer patients compared to healthy individuals, and a high suPAR level is associated with:

- Advanced disease
- High TNM stage
- Aggressive and invasive tumor growth
- Metastatic disease
- Poor prognosis

This applies to various types of cancer, among others:

- Acute leukemia
- Colorectal cancer
- Hepatic cancer
- Cervical cancer
- Lung cancer (small cell and non-small cell)
- Lymphomas
- Ovarian cancer
- Pancreatic cancer
- Prostate cancer
- Esophageal cancer
- Gastric cancer

Thus, various cancers cause an elevated plasma suPAR level. The more serious and advanced disease, the higher suPAR level. suPAR is therefore also a prognostic marker in cancer patients reflecting mortality. Cancer patients with a low suPAR level have a better chance of progression-free survival.

In the general population, an elevated suPAR level is associated with an increased risk of lung cancer and other cancers. Among
smokers, the risk of lung cancer is also higher in individuals with an elevated suPAR level compared to those with lower suPAR levels13.

In \textit{prostate cancer} patients, the suPAR level is higher than in patients with benign prostatic hyperplasia11.

In \textit{neurologic patients} with paraneoplastic cerebellar syndromes or carcinomatous meningitis, the suPAR level is also elevated in plasma and in cerebrospinal fluid14.

In patients with \textit{gastrointestinal cancers}, the suPAR level is higher in patients with esophageal cancer than in patients with colorectal cancer3.

\textbf{suPAR in relation to cancer diagnostics and other biomarkers}

In \textit{patients with liver diseases}, an elevated suPAR level has proved to be an early predictor of future development of hepatocellular carcinoma, and the suPAR level may be elevated as early as 1-7 years prior to appearance of imaging signs of hepatic cancer. In this study, suPAR was statistically stronger than alpha-fetoprotein5.

In patients with \textit{ovarian tumors}, a combination of suPAR and CA-125 is able to discriminate benign tumors from malignant tumors (AUC 0.94; 95% CI 0.90-0.98)9.

\textbf{suPAR in cancer treatment}

In patients in with resectable \textit{colorectal cancer}, the suPAR level is lower than in patients with unresectable disease receiving palliative treatment3,4.

In women with \textit{cervical cancer}, the suPAR level decreases significantly following surgery6.
In patients with acute leukemia, the suPAR plasma level correlates with the number of circulating tumor cells, and following treatment with chemotherapy, the suPAR level decreases to a normal level in parallel with a reduction in the number of tumor cells.

Thus, a high suPAR level in cancer patients is associated with a poor prognosis and a shorter survival.

1. Mustjoki, S., Sidenius, N. & Sier, C. F. M. Soluble Urokinase Receptor Levels Correlate with Number of Circulating Tumor Cells in Acute Myeloid Leukemia and Decrease Rapidly during Chemotherapy Soluble Urokinase Receptor Levels Correlate with Number of Circulating Tumor Cells in Acute Myeloid Leukemia. 7126–7132 (2000).

suPAR in endocrinology

The suPAR level is elevated in patients with inflammation, cancer, and chronic diseases and is associated with:

- Incidence of type 2 diabetes\(^1,2\)
- Incidence and duration of type 1 diabetes\(^3\)
- Type 1 diabetes complications\(^3\)
- Obesity\(^2\)

In a Danish cohort of healthy individuals significantly higher suPAR values were found in those, who developed type 2 diabetes. In the group of middle-aged non-smokers, the risk of developing diabetes was significantly higher in individuals with a high suPAR level compared to those with a low suPAR level. The increased risk remained following adjustment for fasting blood glucose, age, sex, and insulin levels. A similar risk was found in the elderly\(^1\).

Similarly, among overweight individuals (BMI 25-30) with impaired glucose tolerance and a high suPAR level an increased risk of developing diabetes is observed\(^2\).

In type 1 diabetics with an eGFR >15 mL/min/1.73 m\(^2\), the suPAR level is significantly higher than in healthy controls (3.5 vs. 2.3 ng/mL), and the suPAR level is associated with duration of the diabetes. Moreover, the suPAR level is independently associated with diabetes complications. Thus, the median suPAR values in normoalbuminemia and macroalbuminemia are 3.0 ng/mL and 4.9 ng/mL, respectively. For each additional diabetes complication there is a stepwise increase in suPAR level: Number of complications: 0-4: 2.6 ng/mL (1.1-6.2); 3.0 ng/mL (1.6-10.5); 3.8 ng/mL (1.9-10.3); 4.3 ng/mL (2.1-15.1) and 4.9 ng/mL (2.9-13.2), respectively, \(p<0.001\).
Moreover, in diabetic patients with a high suPAR level the risk of cardiovascular diseases, autonomic dysfunction, and albuminuria is significantly higher than in patients with a low suPAR level \(^3\).

2. Heraclides A, Jensen TM, SS Rasmussen et al. The pro-inflammatory biomarker soluble urokinase plasminogen activator receptor (suPAR) is associated with incident type 2 diabetes among overweight but not obese individuals with impaired glucose regulation: effect modification by smoking and body weight status. Diabetologia. 2013 Apr 24
suPAR in neurology

The suPAR level is associated with:

- Atherosclerosis\(^1,2\)
- Carotid plaques\(^3\)
- Cardiovascular diseases and diabetes\(^4,5\)
- Cerebrovascular diseases\(^6,7\)
- Ischemic stroke\(^7\)

The uPA/uPAR system plays a key role in the pathogenesis of atherosclerosis and vascular diseases\(^1,2\). In addition to the role in fibrinolysis and activation of plasminogen into active plasmin, an elevated suPAR level has been found in relation to carotid plaques, and the occurrence of uPAR is increased in atherosclerotic lesions\(^3\).

An elevated suPAR level is found in patients with symptoms of cerebrovascular diseases like amaurosis fugax, transient cerebral ischemia (TCI), and stroke\(^6\).

In patients with carotid plaques, the suPAR level is significantly higher compared to patients with no plaques. After adjustment for risk factors, it was found that patients with a high suPAR level (median 3.7 ng/mL) and carotid plaques are at a significantly higher risk of experiencing an ischemic stroke compared to patients with a low suPAR level (median 2.3 ng/mL) and no plaques\(^7\).

suPAR in cardiovascular diseases

The suPAR level is elevated in patients with cardiovascular diseases compared to healthy individuals, and the suPAR level is associated with:

- Atherosclerosis\(^1\)
- Ischemic heart disease\(^2,13,21\)
- Poor prognosis\(^2,16,18,19\)
- Venous thromboembolism\(^20\)

As well as incidence of:

- Cardiovascular diseases in the general population\(^7-11\)

suPAR is a promising biomarker of cardiovascular diseases, as it reflects “low-grade inflammation” and is associated with lifestyle factors like smoking, alcohol, and an inactive lifestyle. Previous studies have shown, that the uPA/uPAR-system plays a key role in the pathogenesis of atherosclerosis\(^1\). Physiologically the system is involved in fibrinolysis, angiogenesis, and immune function, including leucocyte migration, proliferation, and degradation of matrix during tissue remodeling in the atherosclerotic plaque\(^2\). uPAR is expressed in various cells involved in the development of atherosclerosis, including macrophages, endothelial cells, and smooth muscle cells, and an accumulation of uPAR in the atheroma has been found\(^3\). uPAR plays a role in the coagulation cascade during plasminogen activation and fibrinolysis\(^4\). So far, no causal relationship between the urokinase system and atherosclerosis or cardiovascular diseases has been shown\(^2\). However, new data have demonstrated an association between suPAR and focal segmental glomerulosclerosis. The kidneys play a key role in blood pressure and fluid balance regulation, and therefore suPAR may be associated with heart failure and myocardial strain\(^5,6\). A similar
suPAR-mediated effect on endothelial cells and platelets may potentially play a role in vascular inflammation and thrombosis5.

In five large studies, including a total of 4866 individuals7-11, suPAR is a predictor of \textbf{cardiovascular morbidity and mortality in the general population} even after adjustment for the well-validated Framingham risk score11 and taking into account well-known risk factors, CRP, and other biomarkers associated with cardiovascular diseases. In general, the prognostic value of baseline suPAR level appears to be strongest in the younger age groups and in males11.

In patients with \textbf{ST-segment elevation myocardial infarction (STEMI)} treated with primary PCI, the suPAR level is elevated the first 24 hours after admission. Following adjustment for traditional risk factors, age, sex, CRP, creatinine, troponin T, total cholesterol, diabetes, and hypertension, suPAR remains associated with mortality and a \textbf{new myocardial infarction}2. In non-survivors, baseline suPAR values are significantly higher than in survivors (4.9 ng/mL vs. 3.9 ng/mL), and all-cause mortality increases significantly with higher suPAR values2.

Following adjustment for sex and age, suPAR was associated with an increased risk of developing \textbf{atrial fibrillation}. However, this association disappeared following adjustment for well-known risk factors6.

In \textbf{uremic patients} receiving peritoneal dialysis or hemodialysis, the suPAR level and the carotid intima-media thickness (IMT) in the two dialysis groups are significantly higher than in healthy age- and sex-matched controls, and in a smaller study, suPAR is associated with IMT12.

suPAR is also a prognostic marker of \textbf{cardiovascular diseases in patients with mild to moderate chronic renal diseases}, including cardiac mortality, non-fatal MI, myocardial ischemia, coronary intervention, ischemic stroke, and newly diagnosed peripheral
vascular diseases13. suPAR and eGFR are comparable in estimating mortality risk, and in this population suPAR was a stronger cardiovascular risk predictor than eGFR13.

In patients admitted with suspected \textbf{acute coronary syndrome (ACS)}, suPAR is a strong predictor of mortality and of readmission due to heart failure and a \textbf{new myocardial infarction}. Thus, in non-survivors, the baseline suPAR level was significantly higher than in survivors, and, similarly, the suPAR level was higher in readmitted patients than in non-readmitted patients. The study concluded that in patients with suspected ACS, suPAR improves risk stratification beyond traditional risk factors16.

In a South African study, the baseline suPAR level was not able to predict development of \textbf{hypertension}, but on the other hand, a change in suPAR level was to some extent associated with increasing blood pressure during the observation period17.

In patients resuscitated from a \textbf{cardiac arrest} and treated with hypothermia, suPAR was studied as a potential prognostic tool. One study found that the suPAR level 6 hours after the cardiac arrest was strongly associated with mortality and neurological outcome18. Similarly, in another study, suPAR was strongly associated with mortality but not with neurological outcome19. In patients with non-shockable rhythms, the baseline suPAR level was significantly higher than in patients with shockable rhythms19.

High suPAR levels are associated with incidence of \textbf{venous thromboembolism}20. No significant association between pulmonary embolism and suPAR was found20.

In males and females with \textbf{carotid plaques}, the suPAR level is significantly higher than in individuals with no carotid plaques21,10. Similarly, suPAR is a predictor of \textbf{ischemic heart disease (IHD)},
and in patients with both elevated suPAR level and carotid plaques, the risk of developing IHD is significantly increased21.

Following adjustment for traditional risk factors and subclinical organ damage, suPAR remains associated with \textbf{cardiovascular mortality}10.

Furthermore, in a study of 1126 Danes it was shown that suPAR is able to predict \textbf{coronary artery calcifications} in healthy individuals, as assessed by cardiac CT scan, and that suPAR is associated with calcium score8.

Surgical stress related to \textbf{coronary bypass} does not induce significant changes in suPAR level 6 or 24 hours postoperatively compared to the preoperative value23.

\begin{itemize}
\end{itemize}

suPAR in pulmonary diseases

The suPAR level is elevated in patients with infections and chronic diseases of the lungs and respiratory tract compared to healthy individuals, and a high suPAR level is associated with:

- Bacteremia and sepsis1-4
- Pneumonia5-7
- Asthma and poor disease control in asthma8
- COPD and in relation to an exacerbation9,10
- Incidence of future respiratory cancer11
- Poor prognosis1-7

In general, the suPAR level reflects immune activation regardless of etiology, and therefore the suPAR level is of no diagnostic value. However, in SIRS patients it has been demonstrated that the suPAR level is able to discriminate patients with bacteremia from patients with no bacteremia. A combined model using suPAR, procalcitonin, and IL-6 showed an AUC of 0.804 for prediction of bacteremia in SIRS patients1.

The prognostic value of suPAR has been studied among patients with S. pneumoniae bacteremia2 and in patients with S. pneumoniae, S. aureus or E. coli bacteremia3. In both situations, significantly higher suPAR values were found in non-survivors. In the bacteremia patients, a sensitivity of 83\% and a specificity of 76\% for mortality is found using a cut-off value of 11.0 ng/mL. A similar prognostic value is found in a study of patients with sepsis. Here, a cut-off value of 12 ng/mL is linked to a >80\% sensitivity and a negative predictive value of 94.5\% for mortality4. In mechanically ventilated patients5 and in children with pneumonia6,7, the suPAR level is elevated and associated with seriousness of the disease and a poorer prognosis.
The suPAR level correlates with respiratory obstruction and can potentially help with the objective assessment of asthma8. In addition, the median suPAR level is significantly higher in asthmatics compared to healthy individuals (3.3 ng/mL vs. 2.5 ng/mL)9.

Similarly, in COPD patients, the suPAR level is significantly higher compared to healthy individuals, and the median level is above the level in asthma patients (5.8 ng/mL vs. 3.3 ng/mL)9.

Serum suPAR, CRP, and fibrinogen are significantly higher in COPD patients experiencing an exacerbation compared to healthy controls (4.8 ± 1.9 ng/mL vs. 2.4 ± 0.9 ng/mL, respectively). suPAR was superior to fibrinogen and CRP in identifying COPD patients experiencing an exacerbation, and in multivariable analyses, only suPAR and fibrinogen were predictors of an exacerbation. Moreover, a negative correlation between suPAR and lung function, measured by FEV\textsubscript{1}, was found9.

In the general population, suPAR is associated with the incidence of respiratory cancer, even after adjustment for traditional risk factors, CRP, and leucocytes10.

suPAR in gastroenterology

The following factors are associated with an elevated suPAR level:

- Cirrhosis
- Alcoholic liver disease
- Excessive alcohol consumption
- Hepatic fibrosis
- Acute liver failure
- Alcoholic pancreatitis
- Poor prognosis

In addition, an elevated suPAR level is associated with future incidence of:

- Hepatocellular carcinoma

Inflammation plays a key role in the development of chronic hepatic diseases, and as suPAR is a marker of the degree of inflammation, the diagnostic and prognostic value of suPAR in hepatic diseases has been studied.

The suPAR level is significantly higher in patients with cirrhosis compared to healthy controls. In a study of 159 patients with chronic hepatic diseases, including 98 patients with cirrhosis, the diagnostic ability of suPAR in identifying cirrhosis was good, and suPAR was a strong predictor of mortality or need of transplantation. A cutoff level >9 ng/mL predicted a poor prognosis with a sensitivity and specificity of 70.7% and 77.8%, respectively, as well as a relative risk of 8.5 (3.5-20.3). The suPAR level is higher in patients with alcoholic etiology and correlates positively with fibrosis. In addition, the suPAR level is...
higher in individuals with excessive alcohol consumption compared to healthy individuals\(^3\).

In patients with decompensated cirrhosis, the suPAR level is significantly higher (median 12.9 ng/mL) than in patients with compensated cirrhosis (8.9 ng/mL), and suPAR is associated with 28-day mortality\(^5\).

In patients with spontaneous bacterial peritonitis, an elevated suPAR level in ascites fluid was found, and the level was associated with severity and prognosis\(^5\).

In a small study of patients with acute liver failure, a high median suPAR level of 13.2 ng/mL was found. Similarly, a strong correlation between suPAR and declining liver function (increasing AST/ALT and INR), independently of the etiology, was found\(^6\).

A study of 104 patients shows that the suPAR level on admission was superior to CRP, hematocrit, and creatinine as a prognostic marker of the severity of acute alcoholic pancreatitis. Using a cut-off value of 5 ng/mL, the sensitivity and specificity for predicting moderate or serious pancreatitis were 79% and 78%, respectively. The suPAR level was significantly associated with severity: Mild and moderate/serious: 4.2 ng/mL vs. 6.2 ng/mL, respectively\(^7\).

suPAR in nephrology

The suPAR level is associated with:

- Chronic renal diseases
- Future incidence of chronic renal diseases
- Declining eGFR

In the kidneys, suPAR plays a role in the regulation of the permeability of the glomerular filtration barrier, and suPAR may be involved in podocyte damage and development of focal segmental glomerulosclerosis and diabetic nephropathy.

The suPAR level increases in patients with chronic renal diseases, and a high level is significantly associated with mortality and incidence of cardiovascular diseases in these patients.

The association between suPAR and chronic renal diseases has been further studied in a large study. It was found that the suPAR level was an independent predictor of declining eGFR. During the study follow-up period of 3.7 years, the decline in eGFR in subjects in the lower suPAR quartile was 0.9 mL/min/1.73 m² and 4.2 mL/min/1.73 m² in the upper quartile.

In 1335 individuals with an eGFR >60 mL/min/1.73 m² at study start, a suPAR level in the upper quartile was associated with a significantly increased incidence of chronic renal diseases compared to those in the lower quartile; all in all, a 3-fold increased risk.

In patients with primary and secondary glomerulonephritis, an elevated suPAR level is similarly associated with reduced eGFR and presence of proteinuria.
Reduced renal function causes a significant increase in suPAR level, and in hemodialysis patients, the mean value is 14.8 ng/mL. In this group of patients, a high level is associated with increased mortality and increased risk of hospitalization\(^6\).

suPAR in intensive care

In critically ill patients, the suPAR level is significantly increased. suPAR is an independent prognostic marker, and the change over time correlates with organ dysfunction.

suPAR is elevated and has a prognostic value in patients with:

- SIRS (systemic inflammatory response syndrome)\(^1,2\)
- Sepsis/septic shock\(^3-9\)
- Burn injuries\(^10\)
- Traumatic brain injuries\(^11\)

The suPAR level reflects the body’s immune response to infections, and the level increases with the \textit{severity of the infection}. In patients with \textit{organ dysfunction}, the suPAR value is often a two-digit value. In particular hepatic and renal dysfunction affects the suPAR level\(^3-5\).

suPAR has been studied in \textit{patients with SIRS} who were acutely admitted to the emergency department (n=902). The studies showed that suPAR is a stronger marker of 2-day, 30-day, and 90-day mortality than age, CRP, IL-6, creatinine, and procalcitonin. However, for diagnostic purposes, IL-6 and CRP are superior to suPAR in predicting a positive blood culture\(^1,2\).

A Greek multicenter study including 1914 \textit{patients with sepsis} showed that suPAR is a strong predictor of mortality, and that a suPAR level above 12 ng/mL is linked to a >80% sensitivity for mortality and a negative predictive value of 94.5\%\(^6\).

In addition, the prognostic value of suPAR in patients with sepsis is independent of relevant covariates like APACHE score, CRP, etc.\(^6-9\).
In patients with burn injuries and inhalation trauma requiring mechanical ventilation, the plasma suPAR level and BAL fluid level correlate to IL-6 and coagulation factors. An elevated plasma suPAR level is associated with prolonged ICU stay and the duration of mechanical ventilation\(^\text{10}\).

The suPAR level is elevated in patients with traumatic brain injury. In trauma patients who suffered a brain injury within 12 hours prior to blood sampling, the mean suPAR level is 14.9 ng/mL ± 6.9 vs. 2.8 ng/mL ± 0.7 in control subjects. In these patients suPAR is associated with severity of the brain injury and with mortality\(^\text{11}\).

suPAR in surgery

The suPAR level is elevated in patients with infections, chronic diseases, and cancer compared to healthy individuals. A high suPAR level is associated with:

- Increased mortality risk\(^3\)
- Poor prognosis\(^5,6,8-10\)
- Postoperative pneumonia\(^7\)
- Prosthetic joint infection\(^11\)

suPAR is a well-studied biomarker predicting prognosis, disease severity, and organ dysfunction and is being considered as a marker of the individual’s inflammatory status. It has been demonstrated that biomarkers are able to improve triage and are effective in identifying high and low risk patients among acutely admitted patients\(^1\). Improving the preoperative risk stratification using biomarkers may optimize the patient's clinical outcome\(^2\). Available data on use of biomarkers in addition to risk stratification are observational data, and suPAR has mainly been studied in medical and oncological patients.

Gastric surgery patients and orthopedic surgery patients were included in a study conducted in the emergency department at Hillerød Hospital, Denmark. The TRIAGE study included 5992 unselected patients and confirmed the prognostic value of suPAR regarding mortality, and found it similar in both medical and surgical patients.

In the same study, it was shown that triage based on suPAR level was superior to the current triage system in predicting 30-day mortality: AUC 0.84 (0.82-0.87) vs. 0.62 (0.58-0.66), respectively. In multivariate analyses of 30-day mortality in relation to suPAR
quartiles, adjusted for sex, age, CRP, leucocytes, and triage category, HR was 1.0, 2.2, 8.3, and 26.9 in the upper quartile\(^3\).

A high suPAR level has been demonstrated in both tumor tissue and in blood, and in several cancers, the suPAR level is shown to correlate with a poor prognosis\(^4\). In a few studies, suPAR has been studied as a potential biomarker in gastric surgery.

In a cohort of 518 elective colorectal cancer patients, preoperative measurement of the suPAR level was performed. In multivariate analyses adjusted for age, sex, tumor classification, and localization, suPAR was significantly associated with mortality, HR 1.74 (1.33-2.26; p<0.0001). In addition, the suPAR level was associated with tumor stage and localization; and in colon cancer patients the suPAR level was significantly higher compared to rectal cancer patients\(^5\). The same cohort was also followed in another study, in which the suPAR plasma level was found to be an independent prognostic marker\(^6\).

To identify risk patients among elective colon cancer patients the suPAR level was studied. In patients receiving blood transfusion during surgery, the suPAR level was higher, and a significant association between the suPAR level and postoperative infections was shown. Occurrence of pneumonia was significantly associated with the suPAR level, but any significant association with other infectious complications could not be found\(^7\).

In patients with gastric cancer, the suPAR level was significantly higher compared to healthy controls (2.3 ng/mL ± 0.77), and the suPAR level was significantly higher in cancer patients with metastatic disease (7.0 ng/mL ± 6.1) than in patients with no metastases (4.8 ng/mL ± 4.4). In the group of patients with a suPAR value above 5.2 ng/mL, the mortality was significantly increased\(^8\).
In patients with rectal cancer9 and colon cancer10, a similar prognostic value is found, indicating an increased mortality risk.

suPAR in orthopedic surgery

The diagnostic value of suPAR in prosthetic knee/hip joint infection has been examined in a study. The study included 80 patients of which 45 experienced prosthetic joint infection defined by presence of clinical signs (swelling, redness, tenderness, and pus inside the joint) and a positive culture. In these patients, a significantly higher median suPAR level (6.8 ng/mL) was found compared to patients without infection, who had revision surgery done. Furthermore, suPAR was positively correlated with CRP, and the study showed that suPAR was more precise in diagnosing prosthetic knee/hip joint infection than CRP11.

Authors:

Line Jee Hartmann Rasmussen

Andreas Sandø

Thomas Huneck Haupt

Jesper Eugen-Olsen

Kasper Karmark Iversen

Martin Schultz
Appendix 1:

Have you considered your patient's prognosis?

Source: Hvidovre Hospital emergency department, n=4343
suPAR level and mortality risk

Patients below the age of 70:

<table>
<thead>
<tr>
<th>suPAR (ng/mL)</th>
<th>30 days</th>
<th>90 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (n=5925)</td>
<td>1.4%</td>
<td>2.5%</td>
</tr>
<tr>
<td>0-3 (n=3852)</td>
<td>0.2%</td>
<td>0.5%</td>
</tr>
<tr>
<td>3-6 (n=1661)</td>
<td>1.7%</td>
<td>3.4%</td>
</tr>
<tr>
<td>6-9 (n=287)</td>
<td>7.3%</td>
<td>11.1%</td>
</tr>
<tr>
<td>>9 (n=169)</td>
<td>16.6%</td>
<td>23.1%</td>
</tr>
</tbody>
</table>

Patients above the age of 70:

<table>
<thead>
<tr>
<th>suPAR (ng/mL)</th>
<th>30 days</th>
<th>90 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (n=3666)</td>
<td>8.8%</td>
<td>15.3%</td>
</tr>
<tr>
<td>0-3 (n=750)</td>
<td>2.3%</td>
<td>3.5%</td>
</tr>
<tr>
<td>3-6 (n=1970)</td>
<td>5.3%</td>
<td>10.9%</td>
</tr>
<tr>
<td>6-9 (n=567)</td>
<td>16.6%</td>
<td>28.1%</td>
</tr>
<tr>
<td>>9 (n=379)</td>
<td>27.7%</td>
<td>43.0%</td>
</tr>
</tbody>
</table>

Source: The emergency departments at Hvidovre Hospital and Hillerød Hospital, Denmark. n=9591.
P-[suPAR]

Soluble urokinase plasminogen activator receptor
Unit: ng/mL
Interval: 0.1-16.0

Analysis time: 20 min; the result is available in laboratory systems within 2 h.

Interpretation:

Elevated values are observed in pathological conditions and correlate with the patient's mortality risk.

- **Highly elevated** values (>9) are observed in patients with multiple chronic diseases and/or serious and life-threatening conditions like severe sepsis or seriously impaired organ function. Mortality risk is highly increased.

- **Moderately elevated** values (about 4-9) are, for example, observed in the following conditions: Infections, cancer, COPD, cardiovascular diseases, dementia, diabetes, hepatic and renal diseases. Mortality risk and readmission risk are increased.

- **Low values** (<3) indicate a good prognosis.

Comments:

- The suPAR level should be considered in relation to medical history, clinical findings, and other paraclinical findings.

- If the suPAR level is elevated for no obvious reason, further investigation for an unacknowledged disease may be considered.

- A low suPAR level indicates a low mortality risk and a low risk of critical illness and may support a decision to discharge the patient.
Appendix 4:

How sick is your patient?

suPAR level

<table>
<thead>
<tr>
<th>12+</th>
<th>HIGH RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significantly increased mortality risk</td>
</tr>
<tr>
<td></td>
<td>Critical illness, organ failure</td>
</tr>
<tr>
<td></td>
<td>Severe sepsis, septic shock</td>
</tr>
<tr>
<td></td>
<td>Multiple chronic diseases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>MODERATE RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increased mortality risk</td>
</tr>
<tr>
<td></td>
<td>Prolonged hospital stays</td>
</tr>
<tr>
<td></td>
<td>Increased readmission risk</td>
</tr>
<tr>
<td></td>
<td>Infections and acute illness</td>
</tr>
<tr>
<td></td>
<td>Chronic diseases, e.g. COPD, diabetes, cardiovascular diseases, dementia, peptic ulcer, cancer, hepatic diseases, renal diseases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>MODERATE RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increased mortality risk</td>
</tr>
<tr>
<td></td>
<td>Prolonged hospital stays</td>
</tr>
<tr>
<td></td>
<td>Increased readmission risk</td>
</tr>
<tr>
<td></td>
<td>Infections and acute illness</td>
</tr>
<tr>
<td></td>
<td>Chronic diseases, e.g. COPD, diabetes, cardiovascular diseases, dementia, peptic ulcer, cancer, hepatic diseases, renal diseases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>LOW RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low mortality risk</td>
</tr>
<tr>
<td></td>
<td>Low readmission risk</td>
</tr>
<tr>
<td></td>
<td>No or well-treated comorbidities</td>
</tr>
<tr>
<td></td>
<td>Healthy individuals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>LOW RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low mortality risk</td>
</tr>
<tr>
<td></td>
<td>Low readmission risk</td>
</tr>
<tr>
<td></td>
<td>No or well-treated comorbidities</td>
</tr>
<tr>
<td></td>
<td>Healthy individuals</td>
</tr>
</tbody>
</table>